Alloy 617 Isochronous Stress-Strain Curves

Jill Wright, Nancy Lybeck

July 2015

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Alloy 617 Isochronous Stress-Strain Curves

Jill Wright, Nancy Lybeck

July 2015

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy

Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Alloy 617 Isochronous Stress-Strain Curves

Jill Wright Nancy Lybeck

Advanced Reactor Technologies Advanced Materials R&D Program Review July 14-15, 2015

Work Package AT-15IN160101 Subtask: Isochronous Stress-Strain Curves

Subtask Relevancy

- Isochronous stress-strain curves are an integral part of the Code Case
 - Required in applying the Subsection NH design procedures.
 - Provide designers with strain caused by stress under elevated temperature assuming average properties

Technical Approach/Results/Accomplishments

- Developed hot tensile curves based on the INL Alloy 617 tensile data
- Fit a creep model to INL generated creep curves (up to 3% creep strain)
- Determined the stress and temperature dependence of the parametric constants in the creep model
- Shifted the hot tensile and isochronous curves to represent the average behavior based on a larger data set

Expected Deliverable & Schedule

- Contribute to Appendix T of the Alloy 617 Code Case
- Draft Code Case to be completed August 31, 2015

- Isochronous stress-strain curves (ISSC) and hot tensile curves are needed up to 2.2% strain for Alloy 617
 - 427 950°C in 25°C increments
 - 800 1800°F in 50°F increments
- Hot tensile curves provide an upper bound for isochronous stressstrain curves
- Isochronous curves are not needed for temperature ranges where creep is negligible

HOT TENSILE CURVES

- Hot tensile curves represent tensile behavior of an average strength heat of the alloy for various temperatures
- Experimental tensile curves are used to match the shape

Hot Tensile Curves: Ramberg-Osgood

Nuclear Energy

Used for lower temperatures where creep is not significant

$$arepsilon = arepsilon_E + arepsilon_p$$

$$arepsilon_E = rac{\sigma}{E}$$

$$arepsilon_p = a(\sigma - \sigma_L)^m \qquad \sigma > \sigma_L$$

 ε = strain

 σ = stress

E = elastic modulus

 σ_L = proportional limit

■ The parameters a and m are chosen so the curve goes through the experimentally determined 0.2% offset yield strength and the 2% offset flow stress for the specified temperature.

■ Used for higher temperatures where creep is significant

$$egin{aligned} oldsymbol{arepsilon} oldsymbol{arepsilon} & oldsymbol{arepsilon}_E = rac{oldsymbol{\sigma}}{E} \ oldsymbol{arepsilon}_E & = rac{1}{b} \Bigg[\ln \left(rac{oldsymbol{\sigma}_L - oldsymbol{\sigma}_{UTS}}{oldsymbol{\sigma} - oldsymbol{\sigma}_{UTS}}
ight) \Bigg]^2 & oldsymbol{\sigma} > oldsymbol{\sigma}_L \end{aligned}$$

 $\varepsilon = strain$

 σ = stress

 σ_{UTS} = ultimate tensile strength

 σ_L = proportional limit

■ The parameter b is chosen so the curve goes through the experimentally determined 0.2% offset yield.

800°C Hot Tensile Curve

ISOCHRONOUS CURVES

What is an Isochronous Stress Strain Curve?

Nuclear Energy

■ Isochronous curves are constant-time stress-strain curves for a given temperature

■ The creep strain equation selected has been used by Swindeman (1998) and Booker (1990)

$$\varepsilon_c = at^{1/3} + mcr t$$

a = primary creep strain constantmcr = minimum creep rate

- The equation was fit to all INL creep curves up to 3% strain for temperatures ≥ 800°C
- The 750°C creep curves entered tertiary creep too quickly, and the model did not provide a good fit to the data

Based on these results, the stress and temperature dependence of the minimum creep rate was determined using the equation

$$mcr = a\left(\frac{\sigma}{E}\right)^b e^{-c}/RT$$

 σ = stress

E= elastic modulus

R = universal gas constant

T = absolute temperature

a, b, and c are determined optimally

- The stress and temperature dependence of the primary creep strain constant was quantified using the same equation form
- The isochronous curves can then be generated for each time/temperature combination

Shifting Isochronous Curves

- Generate isochronous curves for the INL heat of Alloy 617
- Calculate the average stress value at 1% strain using the Larson-Miller equation for time to 1% strain (based on multiple heats)

$$LMP = 35663.0735 - 6388.5288 log_{10}(\sigma)$$

$$log_{10}(t_{1\%}) = \frac{LMP}{T} - 19.64334$$

Shifting Isochronous Curves

- Shift the isochronous curves along the elastic stress-strain curve to go through the average stress value at 1% strain
- Exclude curves that exceed the hot tensile curve in the 2% strain range

Comparing Isochronous Curves

Nuclear Energy

■ German Isochronous Stress Strain Curves

PROPOSED APPENDIX T FIGURES

Hot tensile curves were generated

- Ramberg-Osgood equation from 650-800°C
- Voce equation above 800°C
- The curves were shifted to reflect the average behavior of Alloy 617

■ Isochronous curves were generated from 650-1000°C

- 2-parameter creep strain model was used
- The curves were shifted to reflect the average behavior of Alloy 617 at 1% strain

■ Work will continue

- Refine curves as needed
- Generate curves for conventional units
- Develop curves for lower temperatures where ISSC are required but no creep data is available